publications

publications by categories in reversed chronological order. generated by jekyll-scholar.

2009

  1. Optimal tuning of tokamak plasma equilibrium controllers in the presence of time delays
    Eugenio Schuster, David Sondak, Reza Arastoo, and 2 more authors
    In 2009 IEEE Control Applications,(CCA) & Intelligent Control,(ISIC), 2009

2011

  1. Remediation of time-delay effects in tokamak axisymmetric control loops by optimal tuning and robust predictor augmentation
    D Sondak, R Arastoo, E Schuster, and 1 more author
    Fusion engineering and design, 2011
  2. Application of the variational Germano identity to the variational multiscale formulation
    AA Oberai, and D Sondak
    International Journal for Numerical Methods in Biomedical Engineering, 2011

2012

  1. Large eddy simulation models for incompressible magnetohydrodynamics derived from the variational multiscale formulation
    David Sondak, and Assad A Oberai
    Physics of Plasmas, 2012

2014

  1. A residual based eddy viscosity model for the large eddy simulation of turbulent flows
    Assad A Oberai, J Liu, David Sondak, and 1 more author
    Computer Methods in Applied Mechanics and Engineering, 2014

2015

  1. Optimal heat transport solutions for Rayleigh–Bénard convection
    David Sondak, Leslie M Smith, and Fabian Waleffe
    Journal of Fluid Mechanics, 2015
  2. A new class of finite element variational multiscale turbulence models for incompressible magnetohydrodynamics
    David Sondak, John N Shadid, Assad A Oberai, and 3 more authors
    Journal of Computational Physics, 2015

2016

  1. Can phoretic particles swim in two dimensions?
    David Sondak, Cory Hawley, Siyu Heng, and 3 more authors
    Physical Review E, 2016

2017

  1. Drekar v. 2.0
    Ben Seefeldt, David Sondak, David M Hensinger, and 8 more authors
    2017
  2. Algorithmic aspects and performance of AMG-based preconditioning for an implicit FE VMS resistive MHD model.
    Paul Lin, John N Shadid, Edward Geoffrey Phillips, and 5 more authors
    2017
  3. An inadequacy formulation for an uncertain flamelet model
    David Sondak, Todd Oliver, Chris Simmons, and 1 more author
    In 19th AIAA Non-Deterministic Approaches Conference, 2017

2018

  1. Deep learning for turbulent channel flow
    Rui Fang, David Sondak, Pavlos Protopapas, and 1 more author
    arXiv preprint arXiv:1812.02241, 2018

2019

  1. Physical symmetries embedded in neural networks
    Marios Mattheakis, Pavlos Protopapas, David Sondak, and 2 more authors
    arXiv preprint arXiv:1904.08991, 2019

2020

  1. Neural network models for the anisotropic Reynolds stress tensor in turbulent channel flow
    Rui Fang, David Sondak, Pavlos Protopapas, and 1 more author
    Journal of Turbulence, 2020
  2. Unsupervised learning of solutions to differential equations with generative adversarial networks
    Dylan Randle, Pavlos Protopapas, and David Sondak
    arXiv preprint arXiv:2007.11133, 2020
  3. Solving differential equations using neural network solution bundles
    Cedric Flamant, Pavlos Protopapas, and David Sondak
    arXiv preprint arXiv:2006.14372, 2020
  4. Neurodiffeq: A python package for solving differential equations with neural networks
    Feiyu Chen, David Sondak, Pavlos Protopapas, and 4 more authors
    Journal of Open Source Software, 2020
  5. Finding multiple solutions of odes with neural networks
    Marco Di Giovanni, David Sondak, Pavlos Protopapas, and 2 more authors
    In Combining Artificial Intelligence and Machine Learning with Physical Sciences 2020, 2020

2021

  1. Multi-Task Learning based Convolutional Models with Curriculum Learning for the Anisotropic Reynolds Stress Tensor in Turbulent Duct Flow
    Haitz Sáez Ocáriz Borde, David Sondak, and Pavlos Protopapas
    CoRR, 2021
  2. Port-Hamiltonian neural networks for learning explicit time-dependent dynamical systems
    Shaan A Desai, Marios Mattheakis, David Sondak, and 2 more authors
    Physical Review E, 2021
  3. Learning a reduced basis of dynamical systems using an autoencoder
    David Sondak, and Pavlos Protopapas
    Physical Review E, 2021
  4. High Rayleigh number variational multiscale large eddy simulations of Rayleigh-Bénard convection
    David Sondak, Thomas M Smith, Roger P Pawlowski, and 2 more authors
    Mechanics Research Communications, 2021
  5. Coherent solutions and transition to turbulence in two-dimensional Rayleigh-Bénard convection
    Parvathi Kooloth, David Sondak, and Leslie M Smith
    Physical Review Fluids, 2021
  6. Multi-Task Learning based Convolutional Models with Curriculum Learning for the Anisotropic Reynolds Stress Tensor in Turbulent Duct Flow
    Haitz Sáez Ocáriz Borde, David Sondak, and Pavlos Protopapas
    CoRR, 2021

2022

  1. Deqgan: Learning the loss function for pinns with generative adversarial networks
    Blake Bullwinkel, Dylan Randle, Pavlos Protopapas, and 1 more author
    arXiv preprint arXiv:2209.07081, 2022
  2. Auto-eD: A visual learning tool for automatic differentiation
    Lindsey S Brown, Rachel Moon, and David Sondak
    Journal of Open Source Education, 2022
  3. Hamiltonian neural networks for solving equations of motion
    Marios Mattheakis, David Sondak, Akshunna S Dogra, and 1 more author
    Physical Review E, 2022
  4. Convolutional neural network models and interpretability for the anisotropic reynolds stress tensor in turbulent one-dimensional flows
    Haitz Ocáriz Borde, David Sondak, and Pavlos Protopapas
    Journal of Turbulence, 2022